Для Чего Нужна Темная Материя?

Для Чего Нужна Темная Материя
Зачем нам нужна темная материя? — Темная материя нам нужна не только для объяснения астрофизических явлений вроде галактического вращения, движения скоплений и их столкновений, но и для объяснения самого происхождения жизни. Чтобы объяснить почему, нужно вспомнить, что Вселенная началась с горячего и плотного состояния — Большого взрыва, когда все было в виде практически однородного моря отдельных, свободных, высокоэнергетических частиц.

По мере охлаждения и расширения Вселенной образовались протоны, нейтроны и легчайшие ядра (водород, гелий, дейтерий и немного лития), но ничего больше. Только спустя десятки или сотни миллионов лет назад эта материя коллапсировала в достаточно плотные регионы, чтобы образовать звезды и галактики. Все это произошло бы, хотя и немного иначе, с темной материей или без нее.

Но чтобы элементы, необходимые для жизни, расплодились в изобилии — углерод, кислород, азот, фосфор, сера — их нужно выплавлять в ядрах самых массивных звезд во Вселенной. Чтобы из них образовались твердые планеты, органические молекулы и жизнь, им сперва нужно выбросить эти тяжелые атомы в межзвездную среду, где они снова станут звездами, уже следующими поколениями.

Зачем придумали темную материю?

Темную материю ни разу не наблюдали напрямую, она существует только в теории. Так зачем физикам вводить эту субстанцию? Может можно обойтись без неё? newscientist. com Темная материя нужна физикам не просто так. Без нее на самом деле не обойтись, ведь сразу несколько наблюдаемых явлений говорят о необходимости введения такой субстанции. Правда пока что ее природа остается неизвестной О структуре Вселенной ученые знают сегодня далеко не всё.

  • Одной из главных загадок астрофизики сегодня считается темная материя.
  • Эту субстанцию никто еще ни разу не наблюдал напрямую, а над тем, что она может собой представлять, ломает голову не одно поколение ученых.
  • Но если четких доказательств ее присутствия нет, почему же темная материя вообще должна существовать? РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ Самая очевидная причина этого — несоответствие наблюдаемых данных теоретическим расчетам.

Наблюдения показывают, что многие галактики имеют слишком маленькую массу для того гравитационного воздействия, которое они оказывают. Иными словами, если сложить массу всего видимого вещества в галактике, получится, что она не способна оказывать то гравитационное влияние, которое наблюдается с Земли.

Однако, этого недостаточно для введения темной материи, ведь в таком случае можно заменить ее барионной материей, которая просто-напросто не излучает и не видна с Земли. Обстоятельства, которые вынудили физиков все же ввести темную материю, накапливались со временем. За годы работ ученые накопили множество данных наблюдений удаленных галактик.

Они показали, что, например, из разных частей ядра галактик излучение приходит с задержкой во времени. Исследователи стали думать, почему так происходит, в результате чего построили компьютерную модель, которая варьировала параметры так, чтобы теоретические кривые блеска совпали с практическими.

  1. РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ Оказалось, что звезды в галактиках движутся совсем не так, как это было предсказано теорией.
  2. Они двигались так, будто на них действовала еще какая-то невидимая сила.
  3. Еще одно доказательство наличия невидимой материи ученые обнаружили в нашей собственной Солнечной системе.

В 1610-х годах Иоганн Кеплер опубликовал свои работы, в которых описывал законы движения небесных тел. И они хорошо описывали движение всех известных на тот момент планет. Всё было хорошо ровно до того момента, как в 1781 году Уильям Гершель не открыл Уран.

Что делает темная энергия?

Темная энергия — гипотетическая форма энергии, равномерно заполняющая все пространство Вселенной и проявляющаяся в антигравитации, то есть гравитации , отталкивающей, а не притягивающей массивные тела. Была введена в математическую модель Вселенной, чтобы объяснить, по какой причине она расширяется с ускорением.

  1. Это ускорение было обнаружено в конце 90-х годов прошлого столетия в результате наблюдений за сверхновыми звездами типа 1а.
  2. Астрономы используют эти сверхновые в качестве «стандартных свечей» при определении расстояний до галактик , в которых эти сверхновые находятся.
  3. Исходя из того, что четырехмерная Вселенная является плоской (недавно это было доказано наблюдениями спутника WMAP), было подсчитано, что барионная и темная материи должны занимать около 30% всей массы и энергии Вселенной, таким образом, на долю темной энергии приходятся оставшиеся 70%.

Природа темной энергии представляет собой предмет отчаянных споров. Наиболее популярной является гипотеза «космологической постоянной», утверждающая, что темная энергия — это «стоимость существования пространства». Иначе говоря, согласно этой гипотезе любой объем пространства имеет некую фундаментальную, только ему присущую энергию.

  • Увеличение пространства (что при расширении Вселенной и происходит) приводит к увеличению этой энергии, то есть к выполнению ею отрицательной работы (работы по расталкиванию).
  • Популярна также гипотеза «квинтэссенции» — некоего неизвестного на сегодня скалярного поля, которое приводит к существованию той же темной энергии, что и первая гипотеза.

Какая из этих гипотез ближе к истине, смогут показать только более точные измерения ускорения, с которым Вселенная расширяется. По существующим в настоящее время расчетам, первое время после Большого взрыва темная энергия из-за ограниченности пространства была мала, и тогда расширение Вселенной замедлялось из-за гравитационного притяжения барионной и темной материи.

Сколько темной материи во Вселенной?

Тёмная мате́рия — в астрономии и космологии , а также в теоретической физике форма материи , не участвующая в электромагнитном взаимодействии и поэтому недоступная прямому наблюдению. Составляет порядка четверти массы-энергии Вселенной и проявляется только в гравитационном взаимодействии . Понятие тёмной материи введено для теоретического объяснения проблемы скрытой массы в эффектах аномально высокой скорости вращения внешних областей галактик и гравитационного линзирования (в них задействовано вещество, масса которого намного превышает массу обычной видимой материи); среди прочих предложенных оно наиболее удовлетворительно. Состав и природа тёмной материи на настоящий момент неизвестны. В рамках общепринятой космологической модели наиболее вероятной считается модель холодной тёмной материи . Наиболее вероятные кандидаты на роль частиц тёмной материи — вимпы Перейти к разделу «#Суперсимметричные частицы»

Какая самая сильная энергия?

Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ В самых больших масштабах крошечного количества энергии, присущей космосу, достаточно, чтобы преодолеть силу притяжения даже между самыми большими галактиками и их скоплениями во Вселенной.

Каков результат? Ускоренное расширение, поскольку самые удаленные галактики и их скопления с течением времени расходятся все дальше друг от друга и все быстрее. Даже гравитация не может взять верх. Если вести речь о фундаментальных законах природы, то все можно разбить на четыре силы , находящиеся в основе всего сущего во Вселенной: 1.

Сильное ядерное взаимодействие. Это сила, отвечающая за взаимное притяжение атомных ядер, протонов и нейтронов.2. Слабое ядерное взаимодействие. Отвечает за некоторые виды радиоактивного распада и за превращение тяжелых нестабильных элементарных частиц в более легкие.3.

Электромагнитная сила. Эта сила, среди прочего, притягивает и отталкивает заряженные частицы, связывает атомы в молекулы и вызывает электрический ток.4. Гравитация. Эта сила удерживает вместе Землю, Солнечную систему, звезды и галактики. В зависимости от нашего взгляда на них у каждой силы есть определенный масштаб и обстоятельства, при которых она превосходит остальные.

Возьмем самый маленький масштаб — 10 метров в минус 16-й степени, что в миллион раз меньше размера атома. В таком масштабе сильное ядерное взаимодействие может превзойти все прочие силы. Посмотрим, например, на ядро гелия: два протона и два нейтрона, связанные вместе в устойчивой конфигурации.

  • Даже электромагнитного отталкивания между двумя протонами недостаточно, чтобы преодолеть сильное ядерное взаимодействие, которое подобно клею скрепляет ядро.
  • Даже если убрать один нейтрон, оставив два протона и один нейтрон, полученный изотоп гелия все равно будет стабилен.
  • Сильное ядерное взаимодействие на самом малом расстоянии неизменно превосходит все прочие силы.

Поэтому при многих обстоятельствах его можно считать самым сильным. Но попытайтесь сделать атомное ядро слишком большим, и электромагнитная сила возьмет верх. Например, ядро гелия начнет очень часто выбрасывать уран-238, так как отталкивающая сила между различными частями ядра слишком велика, и сильное ядерное взаимодействие не может удержать все вместе.

А если мы возьмем масштаб побольше, например, космический, то здесь интенсивные магнитные поля, порождаемые коллапсирующими звездами и быстро вращающейся заряженной материей, могут ускорять частицы до самой большой энергии во Вселенной, в результате чего получаются космические лучи сверхвысокой энергии, бомбардирующие нас в небе со всех направлений.

В отличие от сильного ядерного взаимодействия, у электромагнитной силы нет пределов; электрическое поле протона можно ощутить на противоположной стороне Вселенной. Слабое ядерное взаимодействие может показаться наименее вероятным кандидатом на первенство по мощи, особенно если обратить внимание на его название; но даже у этого относительного слабака случаются моменты славы.

Как темная материя влияет на расширение Вселенной?

Темная энергия — В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввел в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой «лямбда» — Λ.

  • Эта Λ была чисто формальной константой, в которой сам Эйнштейн не видел никакого физического смысла.
  • После того как было открыто расширение Вселенной, надобность в ней отпала.
  • Эйнштейн очень жалел о своей поспешности и называл космологическую постоянную Λ своей самой большой научной ошибкой.
  • Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения Вселенной, меняется со временем, причем ее зависимость от времени можно объяснить, подбирая величину той самой «ошибочной» эйнштейновской постоянной Λ, которая вносит вклад в скрытую плотность Вселенной.

Эту часть скрытой массы и стали называть «темная энергия». О темной энергии можно сказать еще меньше, чем о темной материи. Во-первых, она равномерно распределена по Вселенной, в отличие от обычного вещества и других форм темной материи. В галактиках и скоплениях галактик ее столько же, сколько вне их.

  1. Во-вторых, она обладает несколькими весьма странными свойствами, понять которые можно, лишь анализируя уравнения теории относительности и интерпретируя их решения.
  2. Например, темная энергия испытывает антигравитацию: за счет ее присутствия темп расширения Вселенной растет.
  3. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках.

А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению. Главный кандидат на роль темной энергии — вакуум. Плотность энергии вакуума не изменяется при расширении Вселенной, что и соответствует отрицательному давлению.

  1. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция.
  2. Надежды на прояснение природы темной энергии связывают прежде всего с новыми астрономическими наблюдениями.
  3. Продвижение в этом направлении, несомненно, принесет человечеству радикально новые знания, поскольку в любом случае темная энергия должна представлять собой совершенно необычную субстанцию, абсолютно непохожую на то, с чем имела дело физика до сих пор.

Итак, наш мир на 95% состоит из чего-то, о чем мы почти ничего не знаем. Можно по-разному относиться к такому не подлежащему никакому сомнению факту. Он может вызывать тревогу, которая всегда сопутствует встрече с чем-то неизвестным. Или огорчение, оттого что такой долгий и сложный путь построения физической теории, описывающей свойства нашего мира, привел к констатации: большая часть Вселенной скрыта от нас и неизвестна нам.

Как проявляет себя темная материя?

Темная материя — гипотетическая форма материи, которая не взаимодействует с электромагнитным излучением и не испускает его, а проявляет себя только гравитационным воздействием. Прямых доказательств существования темной материи в настоящее время нет, но косвенных множество.

  1. Все они основаны на специфическом поведении астрофизических объектов, в частности на аномально высокой скорости вращения внешних областей галактик .
  2. Впервые о проблеме скрытой массы и возможном существовании темной материи заговорили в 1922 году британский и голландский астрономы Джеймс Джинс и Якобус Каптейн.

Исследуя движение звезд в Галактике, они пришли к выводу, что подавляющая часть вещества в ней невидима. Впоследствии множество других наблюдений за нашей и другими галактиками подтвердили это предположение, причем параметры невидимой материи в целом согласовывались между собой, несмотря на разницу в методах и объектах наблюдения.

  1. Сегодня, когда в игру включилась и еще более загадочная темная энергия , ускоряющая разбегание галактик, признано, что общая масса-энергия наблюдаемой Вселенной состоит на 4,9% из обычной барионной материи, на 26,8% — из темной материи и на 68,3% — из темной энергии.
  2. Существует множество кандидатов на роль частиц, составляющих темную материю, из которых наиболее популярны вимпы (WIMP, weakly interacting massive particles) — слабо взаимодействующие массивные частицы (среди них гипотетическое тяжелое или «стерильное» нейтрино), однако все попытки обнаружить их пока результата не принесли.
Читайте также:  Что Можно Назвать Горой?

Существует также ряд более экзотических объяснений так называемой скрытой массы. Такова, например, теория плазменной космологии, разработанная Нобелевским лауреатом по физике Ханнесом Альфвеном, согласно которой Вселенная заполнена проводящей плазмой , по которой курсируют гигантские токи, в галактических масштабах оказывающие на вещество большее влияние, чем гравитация .

Сколько лет темной материи?

О темной материи мало что известно, хотя ее очень активно исследуют. Это загадочная субстация, из которой состоит примерно треть Вселенной. Она слишком инертна, поэтому ее невозможно засечь почти никакими современными приборами — проявляется темная материя только через гравитацию.

  • Грубо говоря, в какой-то момент ученые обнаружили, что галактики на самом тяжелее, чем должны были быть, учитывая массу всего наблюдаемого материала в них .
  • Вот эту «избыточную массу» и списали на темную материю.
  • На этом же принципе основано и наблюдение количества темной материи.
  • Тяжелые объекты во Вселенной искажают летящий мимо них свет в полном соответствии с Общей теорией относительности Эйнштейна.

Измеряя степень искажения света, можно посчитать массу галактики. Затем, вычтя из общей массы массу наблюдаемого вещества, получают количество темной материи. Галактики, в свою очередь, под действием гравитации сбиваются в скопления галактик по 100-1000 штук в каждом, а скопления галактик распределены во Вселенной неравномерно.

  • Они образуют что-то вроде нитей паутины.
  • Считается, что именно по этим «нитя м космической паутины» и распределена темн ая матери я, и что эта структура уплотнений сформировалась вскоре (почти сразу) после Большого взрыва .
  • Так что сегодня астрофизики довольно успешно рассчитывают распределение темной материи во Вселенной, несмотря на всю ее пассивность.

Однако и здесь есть ограничения. Чтобы понять количество темной материи, надо видеть, как искажается свет. Но чем дальше во Вселенную ученые заглядывают, тем свет тусклее. Сложно различить даже свет самих галактик, а уж искажение ими еще более далекого света — и подавно.

  1. И это очень печально, потому что чем дальше мы заглядываем во Вселенную, тем более ранние этапы ее истории видим.
  2. Так происходит из-за того, что свету требуется время, чтобы долететь до Земли.
  3. То есть звезды и галактики на Земле видны на самом деле не такими, какие они есть сейчас, а такими, какими были, когда испустили только сейчас долетевший до нас свет.

Те галактики, которые мы видим в дальнем космосе, возможно, на самом деле уже прекратили свое существование. Получается своеобразная машина времени Вселенной. Так что из-за ограничения возможностей современных приборов, ученые могут рассчитать распределение темной материи только лишь на расстоянии 8-10 млрд лет.

Тогда как возраст Вселенной — 13,4 млрд. Недавно японские ученые нашли способ заглянуть дальше. Для расчетов они использовали искажение не света, а реликтового излучения. Реликтовое излучение — это отпечаток, эхо света и тепла , появившееся , когда Вселенной было всего лишь около 300 000 лет. Теперь оно пр онизывает все пространство в виде слабого фона .

Реликтовое излучение неоднородно — в нем уже есть те самые уплотнения, «комочки», которые потом станут галактиками или скоплениями галактик. Первой частью нового исследования ученых из Университета Нагои был поиск огромного количества максимально далеких галактик.

Что во Вселенной больше всего?

Самый распространенный химический элемент во Вселенной — Если говорить о том, какой элемент самый распространенный во Вселенной , то тут все будет очень просто. На первом месте идет водород, затем гелий, кислород, неон и замыкает пятерку лидеров железо.

  1. А теперь давайте подумаем, какой элемент выбивается из общей картины.
  2. Правильно! Железо! Почему? Да потому, что все остальные представители таблицы Менделеева, кроме железа, являются газами.
  3. А железо — это металл.
  4. Таким образом железо — это самый распространенный металл во всей Вселенной.
  5. При этом он и один из самых важных, ведь если газы формируют в основном атмосферу небесных тел, то железо является основой планет.

А значит можно сказать, что если бы не было железа, то не было бы и большинства объектов во Вселенной.

Что находится за пределами нашей Вселенной?

Сегодняшние телескопы позволяют астрономам заглянуть на 13,75 миллиарда лет в прошлое. Считается, что именно такой возраст нашей Вселенной. Но что находится за пределами наших наблюдений? wikimedia Согласно теории Большого взрыва, наша Вселенная родилась примерно 13,75 миллиарда лет назад и с тех пор смогла расшириться из невероятно плотной «точки» до сегодняшних размеров. Считается, что Вселенная расширялась со скоростью света. Руководствуясь этим фактом и положениями теории относительности ученые пришли к принятому сегодня значению возраста Вселенной.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ Известно, что наше пространство постоянно расширяется и самый дальний его край соответствует времени начала Большого взрыва. На сегодня самая далекая область, что ученые могут видеть — это поверхность последнего рассеяния. Именно оттуда приходят фотоны реликтового излучения, которое возникло почти сразу после Большого взрыва.

Поверхность последнего рассеяния отражает момент, когда Вселенная стала прозрачной для излучения. За этой областью располагается то, что пока не подвластно изучению нашими приборами. Мы не можем увидеть той области, что расположена за поверхностью последнего рассеяния из-за того, что она непрозрачна для излучения.

А ведь именно свет позволяет нам видеть отдаленные объекты и судить об их свойствах. РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ Несмотря на то, что нельзя увидеть то, что происходит за поверхностью последнего рассеяния, астрономы могут судить о пространстве за ней. Для этого они наблюдают, какое влияние она оказывает на существующие астрофизические объекты.

Более того, согласно современной теории Лямбда-CDM, галактики удаляются друг от друга с ускорением. И чем дальше галактика, тем быстрее она удаляется от нас. Это значит, что в какой-то момент скорость удаления галактик превысит световую и мы перестанем их видеть.

Что такое материя простыми словами?

У этого термина существуют и другие значения, см. Материя . Мате́рия (от лат. materia «вещество») — физическое вещество , в отличие от психического и духовного . В классическом значении всё вещественное, «телесное», имеющее массу, протяжённость, локализацию в пространстве, проявляющее корпускулярные свойства.

Сколько энергии во Вселенной?

Анонимный вопрос 13 октября 2015 · 6,2 K Наверное, это прозвучит странно, но суммарная энергия во вселенной скорее всего равна нулю. Или близка к нулю. Конечно, масса нашей вселенной оценивается примерно в 3 x 10^55 кг (это 3 с пятьюдесятью пятью нулями).

  • И вы можете прикинуть, сколько энергии получится по известной всем формуле E=mc^2.
  • Вы можете еще вспомнить об излучении звезд (солнечная радиация).
  • У вас получится очень большое число. Но.
  • Свет, вещество и антивещество — это то, что физики называют «положительной» энергией.
  • Этой энергии очень много, и никто не скажет вам точно, сколько же ее всего.
Читайте также:  Какие Тракторы Относятся К Категории B?

Большиство физиков полагают, однако, что во вселенной существует точно такое же количество «отрицательной» энергии, которая сосредоточена в гравитационном взаимодействии, существующем между частицами с «положительной» энергией. Вся «положительная» энергия компенсируется «отрицательной», и в итоге получается, что суммарная энергия вселенной равна нулю.

Это так называемая теория нулевой энергии вселенной.453 Впервые слышу об отрицательной энергии. Есть какая-нибудь научно-популярная статься об этом? Комментировать ответ Комментировать Во-первых некий комментарий про ответ выше. Я впервые слышу про энергию «гравитационного поля». Это понятие тем более непонятно из-за того, что последнего вообще не существует.

Есть лишь искривление пространства-времени, которое мы называем гравитацией, никакого поля там и в помине нет. Слегка почитав про эту «теорию», я понял, что это не совсем распространенная в. Читать далее 1,4 K Комментировать ответ Комментировать Во-первых про отрицательную энергию.

  • В любом случае коэффициент положительный.
  • Хотя бы даже потому, что сам электрон, считающийся «отрицательно» заряженной частицей, имеет положительный заряд, хотя и существенно меньший, чем «положительно» заряженные протоны (разность потенциалов, если кому интересно погуглите).
  • Взять те же старые весы, где вес груза слева уравнивается.

Читать далее 414 Автор не понимает в физике и написал свои личные рассуждения. Полностью неверно, что отрицательный электрон имеет. Читать дальше Комментировать ответ Комментировать

Что такое Барионная материя?

Барионная материя — Барио́нная материя — материя , состоящая из барионов (нейтронов, протонов) и электронов . То есть, привычная форма материи, вещество . Согласно современным представлениям, 7 % её массы содержится в звёздах, 7 % холодный и горячий газ внутри галактик, 4 % газ в галактических кластерах, 28 % холодный межгалактический газ, 15 % тёплый межгалактический газ, 40 % в разреженном газе с волокнистой структурой .

Как узнали о темной материи?

Темная материя — гипотетическая форма материи, которая не взаимодействует с электромагнитным излучением и не испускает его, а проявляет себя только гравитационным воздействием. Прямых доказательств существования темной материи в настоящее время нет, но косвенных множество.

  • Все они основаны на специфическом поведении астрофизических объектов, в частности на аномально высокой скорости вращения внешних областей галактик .
  • Впервые о проблеме скрытой массы и возможном существовании темной материи заговорили в 1922 году британский и голландский астрономы Джеймс Джинс и Якобус Каптейн.

Исследуя движение звезд в Галактике, они пришли к выводу, что подавляющая часть вещества в ней невидима. Впоследствии множество других наблюдений за нашей и другими галактиками подтвердили это предположение, причем параметры невидимой материи в целом согласовывались между собой, несмотря на разницу в методах и объектах наблюдения.

  1. Сегодня, когда в игру включилась и еще более загадочная темная энергия , ускоряющая разбегание галактик, признано, что общая масса-энергия наблюдаемой Вселенной состоит на 4,9% из обычной барионной материи, на 26,8% — из темной материи и на 68,3% — из темной энергии.
  2. Существует множество кандидатов на роль частиц, составляющих темную материю, из которых наиболее популярны вимпы (WIMP, weakly interacting massive particles) — слабо взаимодействующие массивные частицы (среди них гипотетическое тяжелое или «стерильное» нейтрино), однако все попытки обнаружить их пока результата не принесли.

Существует также ряд более экзотических объяснений так называемой скрытой массы. Такова, например, теория плазменной космологии, разработанная Нобелевским лауреатом по физике Ханнесом Альфвеном, согласно которой Вселенная заполнена проводящей плазмой , по которой курсируют гигантские токи, в галактических масштабах оказывающие на вещество большее влияние, чем гравитация .

Чего больше в составе Вселенной?

Доля нестабильных частиц в составе тёмной материи во времена сразу после Большого взрыва не превышала 2 – 5%, выяснили ученые из МФТИ , Института ядерных исследований РАН и Новосибирского госуниверситета. Работа опубликована в журнале Physical Review D .

« Расхождение космологических параметров в современной Вселенной и во Вселенной вскоре после Большого взрыва, можно объяснить тем, что доля тёмной материи уменьшилась. Мы впервые смогли рассчитать, на сколько тёмной материи стало меньше и насколько велика была нестабильная компонента » , — говорит соавтор исследования академик Игорь Ткачёв , заведующий отделом экспериментальной физики ИЯИ РАН и преподаватель кафедры фундаментальных взаимодействий и космологии МФТИ .

Астрономы впервые заподозрили, что во Вселенной присутствует значительная доля «скрытой массы», ещё в 1930-х годах ХХ века, когда Фриц Цвикки обнаружил «странности» в скоплении галактик в созвездии Волосы Вероники — галактики двигались так, как будто бы на них действует гравитация от некоего невидимого источника.

  1. Эту скрытую массу, которая не проявляет себя никак, кроме гравитационного воздействия, назвали тёмной материей.
  2. Согласно данным космического телескопа «Планк», доля тёмной материи во Вселенной составляет 26,8%, остальное приходится на «обычную» материю (4,9%) и тёмную энергию (68,3%).
  3. Природа тёмной материи до сих пор остаётся неизвестной, однако, похоже, именно её свойства помогут учёным решить проблему, возникшую перед ними после анализа результатов наблюдений космического телескопа «Планк».

Этот аппарат с высокой точностью измерял флуктуации температуры реликтового микроволнового фона — «эха» Большого взрыва. Измеряя эти флуктуации, учёные смогли вычислить ключевые космологические параметры Вселенной в эпоху рекомбинации — примерно через 300 тысяч лет после Большого взрыва.

« Однако выяснилось, что некоторые из этих параметров, а именно параметр Хаббла, описывающий скорость расширения Вселенной, а также параметр, связанный с количеством галактик в скоплениях, значительно расходятся с данными, которые мы получаем из наблюдений за современной Вселенной, например, непосредственно измеряя скорость разлёта галактик и исследуя скопления.

Это расхождение оказалось значительно больше погрешностей и известных нам систематических ошибок. Поэтому либо мы имеем дело с некоей неизвестной нам ошибкой, либо состав древней Вселенной существенно отличался от современного » , — говорит Ткачёв. Объяснить расхождение позволяет гипотеза распадающейся тёмной материи, согласно которой в ранней Вселенной тёмной материи было больше, а затем часть её распалась.

Кто открыл темную энергию?

Темная энергия : как лауреаты Нобеля по физике открыли нечто не поддающееся объяснению Исследователи Сол Перлмуттер, Адам Райсс и Брайан Шмидт, получившие во вторник Нобелевскую премию по физике — это представители двух групп, которые работали в одном и том же направлении.

Почему наша Вселенная расширяется?

Экспериментально расширение Вселенной подтверждается выполнением закона Хаббла, а также уменьшением светимости экстремально удалённых «стандартных свеч» (сверхновых типа Ia). Согласно теории Большого взрыва, Вселенная расширяется из начального сверхплотного и сверхгорячего состояния.