Где Возникает Электрическое Поле?

Где Возникает Электрическое Поле
Электрическое поле возникает при наличии напряжения на токоведущих частях электроустановок. Пространство, в котором напряженность электрического поля равна 5 кВ/м и больше, принято называть опасной зоной или зоной влияния.

Кто создает электрическое поле?

Электрическое поле создается электрическими зарядами и обнаруживается при помощи электрических зарядов по действию на них определенной силы. Электрическое поле распространяется с конечной скоростью 300000 км/с в вакууме.

Как в пространстве создается электрическое поле?

Электри́ческое по́ле — частная форма проявления (наряду с магнитным полем) электромагнитного поля , определяющая действие на электрический заряд силы, не зависящей от скорости его движения. Электрическое поле создается электрическими зарядами или переменным магнитным полем.

Представление об электрическом поле было введено в науку М. Фарадеем в 1830-х годах. Согласно Фарадею, каждый покоящийся заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот; так осуществляется взаимодействие зарядов (концепция близкодействия).

Основная количественная характеристика электрического поля — напряженность электрического поля \(\small\small\vec \) , определяется как отношение силы \(\small\small\vec \) , действующей на заряд, к величине заряда q . \(\vec = \frac } \) Наряду с напряженностью электрическое поле характеризуется вектором электрической индукции .

Распределение электрического поля в пространстве наглядно изображается с помощью силовых линий напряженности. Силовые линии потенциального электрического поля , порождаемого электрическими зарядами, начинаются на положительных зарядах и оканчиваются на отрицательных. Силовые линии вихревого электрического поля , порождаемого переменным магнитным полем, замкнуты.

Напряженность электрического поля удовлетворяет принципу суперпозиции, согласно которому в точке пространства напряженность поля Е , создаваемого несколькими зарядами, равна сумме напряженностей полей ( E 1 , E 2 , E 3 , . .) отдельных зарядов: Е = E 1 + E 2 + E 3 +.

Чем образуется электрическое поле?

Электростати́ческое по́ле, электрическое поле неподвижных и не меняющихся со временем электрических зарядов, осуществляющее взаимодействие между ними. Электростатическое поле характеризуется напряженностью электрического поля Е , которая является его силовой характеристикой: Напряженность электростатического поля показывает, с какой силой электростатическое поле действует на единичный положительный электрический заряд , помещенный в данную точку поля.

  • Направление вектора напряженности совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующий на отрицательный заряд.
  • Электростатическое поле является стационарным (постоянным), если его напряженность не изменяется с течением времени.
  • Стационарные электростатические поля создаются неподвижными электрическими зарядами.

Электростатическое поле однородно, если вектор его напряженности одинаков во всех точках поля, если вектор напряженности в различных точках различается, поле неоднородно. Однородными электростатическими полями являются, например, электростатические поля равномерно заряженной конечной плоскости и плоского конденсатора вдали от краев его обкладок.

Одно из фундаментальных свойств электростатического поля заключается в том, что работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от траектории движения, а определяется только положением начальной и конечной точек и величиной заряда. Следовательно, работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Силовые поля, обладающие этим свойством, называют потенциальными или консервативными. То есть электростатическое поле — это потенциальное поле, энергетической характеристикой которого является электростатический потенциал , связанным с вектором напряженности Е соотношением: Е = -gradj .

  1. Для графического изображения электростатического поля используют силовые линии (линии напряженности) — воображаемые линии, касательные к которым совпадают с направлением вектора напряженности в каждой точке поля.
  2. Для электростатических полей соблюдается принцип суперпозиции .
  3. Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов.

Напряженность результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженности полей, создаваемых в данной точке каждым из зарядов в отдельности. Всякий заряд в окружающем его пространстве создает электростатическое поле. Чтобы обнаружить поле в какой-либо точке, надо поместить в точку наблюдения точечный пробный заряд — заряд, который не искажает исследуемое поле (не вызывает перераспределения зарядов, создающих поле).

Когда возникает электромагнитное поле?

Электрические поля возникают за счет разницы напряжений: чем больше электрическое напряжение, тем более сильным будет возникающее поле. Магнитные поля возникают там, где проходит электрический ток: чем сильнее ток, тем сильнее магнитное поле. Электрическое поле есть даже при отсутствии электрического тока.

Как найти электрическое поле?

Единицы измерения и формулы — Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке: E = F / q , где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке. Если нужно выразить силу через напряженность, мы получим следующую формулу: Направление напряженности электрического поля всегда совпадает с направлением действующей силы.

Что такое электрическое поле своими словами?

Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов). Электрическое поле представляет собой особый вид материи, связанный с электрическими зарядами и передающий действия зарядов друг на друга.

Как узнать есть ли электрическое поле?

Анонимный вопрос 19 декабря 2018 · 14,8 K Электрическое поле можно обнаружить с помощью любого заряженного тела, поскольку в электрическом поле и заряженное тело взаимодействуют друг с другом. В быту чтобы определить электрическое поле, скрытую проводку или место короткого замыкания, нужно воспользоваться специальным электромагнитным датчиком.

  • Работает датчик, как и большинство подобных приборов, на основании регистрирования проводникового электрического поля, которое в момент обнаружения находится под стандартным напряжением сети.
  • А самый простой способ обнаружить магнитное поле, это компас.
  • Это намагниченная узкая полоска металла называемая стрелкой.
Читайте также:  Что Такое Геодезия Простыми Словами?

Она всегда направлена в доль линий напряженности магнитного поля земли. Но если ее поднести к источнику магнитного поля скажем к работающему трансформатору или поднести к ней обыкновенный магнит то она изменит свое положение, то есть покажет, что есть более сильное внешнее поле которое и оказало на нее воздействие.13,7 K Комментировать ответ Комментировать

Для чего нужно электрическое поле?

1.2. Электрическое поле — По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле . Это поле оказывает силовое действие на другие заряженные тела.

  1. Главное свойство электрического поля – действие на электрические заряды с некоторой силой.
  2. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.
  3. Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда – небольшого по величине точечного заряда, который не производит заметного перераспределения исследуемых зарядов.

Для количественного определения электрического поля вводится силовая характеристика напряженность электрического поля . Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда: Напряженность электрического поля – векторная физическая величина. Направление вектора в каждой точке пространства совпадает с направлением силы, действующей на положительный пробный заряд. Электрическое поле неподвижных и не меняющихся со временем зарядов называется электростатическим . Во многих случаях для краткости это поле обозначают общим термином – электрическое поле Если с помощью пробного заряда исследуется электрическое поле, создаваемое несколькими заряженными телами, то результирующая сила оказывается равной геометрической сумме сил, действующих на пробный заряд со стороны каждого заряженного тела в отдельности. Это свойство электрического поля означает, что поле подчиняется принципу суперпозиции . В соответствии с законом Кулона напряженность электростатического поля, создаваемого точечным зарядом Q на расстоянии r от него, равна по модулю Это поле называется кулоновским . В кулоновском поле направление вектора зависит от знака заряда Q : если Q > 0 , то вектор направлен по радиусу от заряда, если Q < 0 , то вектор направлен к заряду. Для наглядного изображения электрического поля используют силовые линии .

Что является источником магнитного поля?

Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам). Ответ: 2. Электрический ток.

Где магнитное поле существует?

Электрическое поле. Откуда берется ток.

Магнитное поле существует вокруг любого проводника с током, т.е. вокруг движущихся электрических зарядов. Электрический ток и магнитное поле неотделимы друг от друга.

Что характеризует электрическое поле?

Как и переменное электрическое поле, Э.п. характеризуется напряжённостью электрического поля Е: отношением силы, действующей на заряд, к величине заряда.

Как изображают электрическое поле?

Щелкните по ссылке » Теорема Остроградского–Гаусса «, чтобы ознакомиться с презентацией раздела в формате PowerPoint. Для возврата к данной странице закройте окно программы PowerPoint. Теорема Остроградского–Гаусса, которую мы докажем и обсудим позже, устанавливает связь между электрическими зарядами и электрическим полем. Она представляет собой более общую и более изящную формулировку закона Кулона.

Остроградский Михаил Васильевич (1801 – 1862) отечественный математик и механик. Учился в Харьковском ун-те (1816 – 1820), совершенствовал знания в Париже (1822 – 1827). Основные работы в области математического анализа, математической физики, теоретической механики. Решил ряд важных задач гидродинамики, теории теплоты, упругости, баллистики, электростатики, в частности задачу распространения волн на поверхности жидкости (1826 г.). Получил дифференциальное уравнение распространения тепла в твердых телах и жидкостях. Известен теоремой Остроградского-Гаусса в электростатике (1828 г.).

table>

Гаусс Карл Фридрих (1777 – 1855) – немецкий математик, астроном и физик. Исследования посвящены многим разделам физики. В 1832 г. создал абсолютную систему мер (СГС), введя три основных единицы: единицу времени – 1 с, единицу длины – 1 мм, единицу массы – 1 мг, и в 1833 г. совместно с В. Вебером построил первый в Германии электромагнитный телеграф. Еще в 1845 г. пришел к мысли о конечной скорости распространения электромагнитных взаимодействий.

В принципе, напряженность электростатического поля, создаваемого данным распределением зарядов, всегда можно вычислить с помощью закона Кулона. Полное электрическое поле в любой точке является векторной суммой (интегральным) вкладом всех зарядов, т.е.

  • Однако, за исключением самых простых случаев, вычислить эту сумму или интеграл крайне сложно.
  • Здесь приходит на помощь теорема Остроградского-Гаусса, с помощью которой гораздо проще удается рассчитать напряженность электрического поля, создаваемая данным распределением зарядов.
  • Основная ценность теоремы Остроградского-Гаусса состоит в том, что она позволяет глубже понять природу электростатического поля и устанавливает более общую связь между зарядом и полем .
Читайте также:  Где Делают Трактор Т 25?

Но прежде, чем переходить к теореме Остроградского-Гаусса необходимо ввести понятия: силовые линии электростатического поля и поток вектора напряженности электростатического поля . Для того чтобы описать электрическое поле, нужно задать вектор напряженности в каждой точке поля. (рис.2.1). Рис.2.1 Силовой линии приписывают определенное направление – от положительного заряда к отрицательному, или в бесконечность.

Чем опасно электрическое поле?

Влияние электромагнитных полей высокой интенсивности проявляется в угнетающем эффекте на Т-систему клеточного иммунитета. Под действием ЭМП увеличивается выработка адреналина, активизируется свертываемость крови, снижается активность гипофиза. Влияние на половую систему.

Откуда берутся электромагнитные волны?

Электромагнитные волны — Увы, мы не можем потрогать руками электромагнитные волны. Осталось разобраться, как это так: волна есть, а возможности пощупать ее — нет. Электромагнитная волна появляется благодаря электромагнитному полю . Вот есть электрическое поле — его создает любой электрический заряд.

  1. Есть магнитное поле — оно возникает из-за движущегося заряда.
  2. А их взаимодействие — это электромагнитное поле .
  3. Если совсем честно, то электрическое и магнитное поле не могут существовать в отдельности, потому что частицы всегда есть электрическое поле и она всегда худо-бедно да движется.
  4. Рассмотрение в отдельности электрических и магнитных полей может быть только в теоретической физике.

В реальных инженерных задачах рассматривается обязательно электромагнитное поле. Электромагнитная волна — это распространение электромагнитного поля. А если конкретнее, то электрическое поле колеблется (меняет свое значение и направление вектор напряженности электрического поля ), магнитное поле колеблется (меняет значение и направление вектор магнитной индукции), эти колебания распространяются, и получается электромагнитная волна. Где Возникает Электрическое Поле К электромагнитным волнам относятся радио, Wi-Fi и даже свет.

Где применяются электромагнитные поля?

Электромагнитное поле (ЭМП) – это особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. ЭМП состоит из двух составляющих: электрического поля, которое создается электрическими зарядами заряженными частицами в пространстве и магнитного поля, которое создается при движении электрических зарядов по проводнику.

  1. Электрическое поле характеризуется напряженностью электрического поля (Е, В/м), магнитное поле – напряженностью магнитного поля (Н, А/м).
  2. Физической причиной существования ЭМП является то, что изменяющееся во времени электрическое поле возбуждает магнитное поле, а магнитное поле – вихревое электрическое поле.

Непрерывно изменяясь, обе компоненты поддерживают существование электромагнитного поля. ЭМП характеризуется длиной волны (м) и частотой (Гц). Электромагнитные волны как правило классифицируются по частотам и длине волны. По частотному и волновому диапазону электромагнитные волны подразделяются: на крайне низкие, КНЧ (3-30Гц) – декамегаметровые (100-10Мм); сверхнизкие, СНЧ (30-300Гц) – мегаметровые (10-1Мм); инфранизкие, ИНЧ (0,3-3Кгц) – гектокилометровые (1000-100км); очень низкие, ОНЧ (3-30Кгц) – мириаметровые (100-10км); низкие частоты, НЧ (30-300Кгц) – километровые (10-1км); средние, СЧ (0,3-3МГц) – гектометровые (1-0,1км); высокие, ВЧ (3-30МГц) – декаметровые (100-10м); очень высокие, ОВЧ (30-300МГц) – метровые (10-1м); ультравысокие, УВЧ (0,3-3ГГц) – дециметровые (1-0,1м); сверхвысокие, СВЧ (3-30ГГц) – сантиметровые (10-1см); крайне высокие, КВЧ (30-300ГГц) – миллиметровые (10-1мм); гипервысокие, ГВЧ (300-3000ГГц) – децимиллиметровые (1-0,1мм).

Электромагнитные поля радиочастот обладают рядом свойств (способностью нагревать материалы, распространяться в пространстве и отражаться от границы раздела двух сред, взаимодействовать с веществом), благодаря которым ЭМП широко используется в различных отраслях народного хозяйства: промышленности, науке, технике, медицине.

Электромагнитные волны диапазона низких, средних, высоких и очень высоких частот применяется для термообработки металлов, полупроводниковых материалов и диэлектриков (поверхностный нагрев металла, закалка и отпуск, напайка твердых сплавов, пайка, плавка металлов и полупроводников, сушка древесины и др.).

  1. ЭМП диапазона ВЧ и ОВЧ часто применяются в радиосвязи, телевидении, медицине, для нагрева диэлектриков в высокочастотном электрическом поле (сварка полимерной пленки, полимеризации клея при склейке деревянных изделий, нагрев пластмасс и пресспорошков и др.).
  2. Электромагнитные волны диапазона УВЧ, СВЧ и КВЧ используются в радиолокации, радионавигации, для релейной связи, геодезии, дефектоскопии, физиотерапии.

ЭМП УВЧ диапазона применяются для вулканизации резины, термической обработке, стерилизации, пастеризации, вторичного нагрева пищевых продуктов и т.д. В физиотерапии ЭМП используют как один из терапевтических факторов в комплексном лечении многих заболеваний ( ВЧ-установки для диатермии и индуктотермии, специальные аппараты УВЧ-терапии, СВЧ-аппараты для микроволновой терапии).

Как возникает электрический ток?

Основные типы проводников — В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника.

Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома). Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания. Электролиты — «жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока» .

  • Ионы образуются в процессе электролитической диссоциации.
  • При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы.
  • В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них.
  • Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.
Читайте также:  Какие Свойства Полей Вы Знаете?

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах .

Что такое работа электрического поля?

1.4. Работа в электрическом поле. Потенциал — При перемещении пробного заряда q в электрическом поле электрические силы совершают работу. Эта работа при малом перемещении равна (рис.1.4.1):

Рисунок 1.4.1. Работа электрических сил при малом перемещении заряда q

Рассмотрим работу сил в электрическом поле, создаваемом неизменным во времени распределенным зарядом, т.е. электростатическом поле Электростатическое поле обладает важным свойством: Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

  • Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями.
  • Следствием независимости работы от формы траектории является следующее утверждение: Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Силовые поля, обладающие этим свойством, называют потенциальными или консервативными . На рис.1.4.2 изображены силовые линии кулоновского поля точечного заряда Q и две различные траектории перемещения пробного заряда q из начальной точки (1) в конечную точку (2). Работа Δ A кулоновских сил на этом перемещении равна Таким образом, работа на малом перемещении зависит только от расстояния r между зарядами и его изменения Δ r . Если это выражение проинтегрировать на интервале от r = r 1 до r = r 2 , то можно получить

Рисунок 1.4.2. Работа кулоновских сил при перемещении заряда q зависит только от расстояний r 1 и r 2 начальной и конечной точек траектории

Полученный результат не зависит от формы траектории. На траекториях I и II, изображенных на рис.1.4.2, работы кулоновских сил одинаковы. Если на одной из траекторий изменить направление перемещения заряда q на противоположное, то работа изменит знак. Отсюда следует, что на замкнутой траектории работа кулоновских сил равна нулю. то при перемещении пробного заряда q работа A результирующего поля в соответствии с принципом суперпозиции будет складываться из работ

История открытия — Известные ещё со времён античности электричество и магнетизм до начала XIX века считались явлениями, не связанными друг с другом, и рассматривались в разных разделах физики. В 1819 г. датский физик Х.К. Эрстед обнаружил, что проводник, по которому течёт электрический ток , вызывает отклонение стрелки магнитного компаса, расположенного вблизи этого проводника, из чего следовало, что электрические и магнитные явления взаимосвязаны.

Французский физик и математик А. Ампер в 1824 году дал математическое описание взаимодействия проводника тока с магнитным полем (см. Закон Ампера ). В 1831 г. английский физик М. Фарадей экспериментально обнаружил и дал математическое описание явления электромагнитной индукции — возникновения электродвижущей силы в проводнике, находящемся под действием изменяющегося магнитного поля.

В 1864 г. Дж. Максвелл создаёт теорию электромагнитного поля , согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого — электромагнитного поля. Эта теория с единой точки зрения объясняла результаты всех предшествующих исследований в области электродинамики , и, кроме того, из неё вытекало, что любые изменения электромагнитного поля должны порождать электромагнитные волны , распространяющиеся в диэлектрической среде (в том числе, в пустоте) с конечной скоростью, зависящей от диэлектрической и магнитной проницаемости этой среды.

  1. Для вакуума теоретическое значение этой скорости было близко к экспериментальным измерениям скорости света, полученным на тот момент, что позволило Максвеллу высказать предположение (впоследствии подтвердившееся), что свет является одним из проявлений электромагнитных волн.
  2. Теория Максвелла уже при своём возникновении разрешила ряд принципиальных проблем электромагнитной теории, предсказав новые эффекты и дав надёжную и эффективную математическую основу описанию электромагнитных явлений.

Однако при жизни Максвелла наиболее яркое предсказание его теории — предсказание существования электромагнитных волн — не получило прямых экспериментальных подтверждений. В 1887 г. немецкий физик Г. Герц поставил эксперимент, полностью подтвердивший теоретические выводы Максвелла.

Его экспериментальная установка состояла из находящихся на некотором расстоянии друг от друга передатчика и приёмника электромагнитных волн, и фактически представляла собой исторически первую систему радиосвязи , хотя сам Герц не видел никакого практического применения своего открытия, и рассматривал его исключительно как экспериментальное подтверждение теории Максвелла.

В XX в. развитие представлений об электромагнитном поле и электромагнитном излучении продолжилось в рамках квантовой теории поля , основы которой были заложены великим немецким физиком Максом Планком . Эта теория, в целом завершённая рядом физиков около середины XX века, оказалась одной из наиболее точных физических теорий, существующих на сегодняшний день.

Что является источником магнитного поля?

Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам). Ответ: 2. Электрический ток.